Bayesian Joint Modelling of Benefit and Risk in Drug Development

Maria Costa

maria_j.costa@novartis.com

European Statistical Meeting on Decision Making in Drug Development

12th December 2018

References

Joint work with Tom Drury (GSK)

Analytical Report

The Case for a Bayesian Approach to Benefit-Risk Assessment: Overview and Future Directions

Maria J. Costa, PhD¹, Weili He, PhD², Yannis Jemiai, PhD³, Yueqin Zhao, PhD⁴, and Carl Di Casoli, PhD⁵

Outline

- Motivation
- Bayesian Joint Modelling of Mixed Outcomes
- Simulation Study
- Case Study in Type 1 Diabetes
- Summary

3

Motivation

- How to assess whether an intervention is efficacious?
 - Typically this means that clinical endpoints of interest reach statistical significance
 - "...For comparison, at week 24, 56.1% of patients in treatment group had gained ≥15 letters from baseline compared with 12.3% of patients in the sham group (P < .001)."

Motivation

- How to assess whether an intervention is efficacious?
 - Typically this means that clinical endpoints of interest reach statistical significance
 - "...For comparison, at week 24, 56.1% of patients in treatment group had gained ≥15 letters from baseline compared with 12.3% of patients in the sham group (P < .001)."
- How to assess if the benefit-risk profile is 'positive' for the patient population studied?
 - Is there a **trade-off** between efficacy and safety? If so, for **which endpoints**?
 - Are there subgroups of patients for whom the new intervention has a better benefit-risk profile?

5

Motivation

- How to assess whether an intervention is efficacious?
 - Typically this means that clinical endpoints of interest reach statistical significance
 - "...For comparison, at week 24, 56.1% of patients in treatment group had gained ≥15 letters from baseline compared with 12.3% of patients in the sham group (P < .001)."
- How to assess if the benefit-risk profile is 'positive' for the patient population studied?
 - Is there a **trade-off** between efficacy and safety? If so, for **which endpoints**?
 - Are there subgroups of patients for whom the new intervention has a better benefit-risk profile?
- Quantitative benefit-risk assessment can help address some of these questions

Motivation

Quantitative Benefit-Risk (BR) Assessment

- Can help teams gain **insight** into specific BR questions about key endpoints of interest
- Important to communicate BR to stakeholders in a way that supports decision-making
- Important to quantify uncertainty in BR profile particularly if aim is to **discharge risk**

Motivation

Multivariate Modelling

- Potential for efficacy and safety signals to be linked via exposure to active drug
- Joint modelling of key efficacy and safety endpoints enables efficient data driven BR analyses & can account for mixture of endpoints (continuous, binary, count, etc)

Quantitative Benefit-Risk (BR) Assessment

- Can help teams gain **insight** into specific BR questions about key endpoints of interest
- Important to communicate BR to stakeholders in a way that supports decision-making
- Important to quantify uncertainty in BR profile particularly if aim is to **discharge risk**

Motivation

Multivariate Modelling

- Potential for efficacy and safety signals to be linked via exposure to active drug
- Joint modelling of key efficacy and safety endpoints enables efficient data driven BR analyses & can account for mixture of endpoints (continuous, binary, count, etc)

Bayesian Inference

- Framework to build relevant and intuitive probability statements that can quantify uncertainty and risk
- Bayesian updating mechanism naturally supports "Learn & Confirm" drug development paradigm – crucial when assessing BR

Quantitative Benefit-Risk (BR) Assessment

- Can help teams gain **insight** into specific BR questions about key endpoints of interest
- Important to communicate BR to stakeholders in a way that supports decision-making
- Important to quantify uncertainty in BR profile particularly if aim is to discharge risk

Bayesian Joint Modelling of Mixed Outcomes – GLMM

- Option 1: Use generalized linear mixed models (GLMM)
 - Assume J different outcomes on same subject (each following some distribution)
 - For subject *i* with mean response μ_i , $g(\mu_i) = X_i b + Z_i u_i$, $u_i \sim N(0, f(X_i))$

Bayesian Joint Modelling of Mixed Outcomes – GLMM

- Option 1: Use generalized linear mixed models (GLMM)
 - Assume J different outcomes on same subject (each following some distribution)
 - For subject *i* with mean response μ_i , $g(\mu_i) = X_i b + Z_i u_i$, $u_i \sim N(0, f(X_i))$
- Random effect u_i is shared across all J observations for subject i thus modelling potential correlation between efficacy and safety outcomes

11

Bayesian Joint Modelling of Mixed Outcomes – GLMM

- Option 1: Use generalized linear mixed models (GLMM)
 - Assume J different outcomes on same subject (each following some distribution)
 - For subject i with mean response μ_i , $g(\mu_i) = X_i b + Z_i u_i$, $u_i \sim N(0, f(X_i))$
- Random effect u_i is shared across all J observations for subject i thus modelling potential correlation between efficacy and safety outcomes
- If $g(\mu_i) \neq \text{identity}$, fixed effects **b** are **conditional** on random effects u_i
 - Monte Carlo integration can be used to obtain marginal population effects important when making inferences at the population level
- Constraints may be necessary to ensure identifiability for certain distributions

Bayesian Joint Modelling of Mixed Outcomes – Copulas

- Option 2: Use copulas
 - Copulas are distribution functions used to build new multivariate distributions given set of marginal distributions of interest (which are preserved)
 - E.g., $H(y_1, y_2) = C(F(y_1), G(y_2) | \theta)$, where:
 - o F(.) and G(.) are the CDFs of the marginal distributions of y_1 and y_2 , respectively
 - o $C(., |\theta)$ is the copula function (e.g., Gaussian CDF)
 - o θ measures association between y_1 and y_2

13

Bayesian Joint Modelling of Mixed Outcomes – Copulas

- Option 2: Use copulas
 - Copulas are distribution functions used to build new multivariate distributions given set of marginal distributions of interest (which are preserved)
 - E.g., $H(y_1, y_2) = C(F(y_1), G(y_2) | \theta)$, where:
 - o F(.) and G(.) are the CDFs of the marginal distributions of y_1 and y_2 , respectively
 - o $C(., |\theta)$ is the copula function (e.g., Gaussian CDF)
 - o θ measures association between y_1 and y_2
- Possible to directly obtain marginal population effects for parameters of interest
- Choice of copula $C(., |\theta)$ may impact results through different dependency assumptions
- Challenging to interpret beyond 3 dimensions (non-unique model definition)

Joint Modelling, Benefit-Risk and Decision-Making

- Aim of BR assessment is two fold:
 - · Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
 - · Understand trade-off between efficacy & safety

15

Joint Modelling, Benefit-Risk and Decision-Making

- Aim of BR assessment is two fold:
 - Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
 - Understand trade-off between efficacy & safety
- Define different BR profiles using clinically meaningful efficacy and safety thresholds:
 - $\Delta_{\rm e}$ represents minimum improvements in efficacy with the new drug relative to comparator
 - $\Delta_{\!s}$ represents maximum increases in risk with the new drug relative to comparator
- $\Delta_{\rm e}$ and $\Delta_{\rm s}$ are independent and should be set by the project team can be viewed as clinical Go/No-go boundaries

Joint Modelling, Benefit-Risk and Decision-Making

- Aim of BR assessment is two fold:
 - · Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
 - Understand trade-off between efficacy & safety
- Define different BR profiles using clinically meaningful efficacy and safety thresholds:
 - $\Delta_{\rm e}$ represents minimum improvements in efficacy with the new drug relative to comparator
 - $\Delta_{\rm s}$ represents maximum increases in risk with the new drug relative to comparator
- $\Delta_{\rm e}$ and $\Delta_{\rm s}$ are independent and should be set by the project team can be viewed as clinical Go/No-go boundaries
- Trade-off between efficacy and safety represented by the joint probability statement:

Prob
$$(\mu_2 - \mu_1 > \Delta_e \text{ and } p_2 - p_1 < \Delta_s | \text{ data, prior})$$

17

Joint Modelling, Benefit-Risk and Decision-Making

Simulation Study

- Objective of simulation study was 2-fold:
 - To understand inference properties with GLMM and Copulas
 - o Bias, MSE, etc...
 - o Impact of the characteristics of the marginal distributions on inference outcome
 - To develop graphical approaches for decision-making
 - o For study design
 - o For study data analysis
- All SAS and R code available!

23

Simulation Study - Set Up

- Two treatment arms: new active drug (treatment 2) vs control (treatment 1)
- Endpoints and parameters:

BR Endpoints	Endpoint Type	Parameter Values	Correlation between endpoints
Primary efficacy endpoint	Continuous, N (μ , σ^2)	μ_1 = -150, μ_2 = -50	$\rho_1 = 0.1$
Key AE endpoint (e.g AESI)	Binary, Bernoulli (p)	$p_1 = 0.1, p_2 = 0.4$	$ \rho_2 = 0.6 $

Simulation Study – Set Up

- Two treatment arms: new active drug (treatment 2) vs control (treatment 1)
- Endpoints and parameters:

BR Endpoints	Endpoint Type	Parameter Values	Correlation between endpoints
Primary efficacy endpoint	Continuous, N (μ , σ^2)	μ_1 = -150, μ_2 = -50	ρ ₁ = 0.1
Key AE endpoint (e.g AESI)	Binary, Bernoulli (p)	p ₁ = 0.1, p ₂ = 0.4	$\rho_2 = 0.6$

- Joint distribution of interest: μ₂ μ₁ and p₂ p₁
- 1000 simulated datasets generated, n = 100 / arm
- Non-informative priors assumed for all model parameters
- Bayesian inference performed using MCMC

2

Simulation Study – Example Dataset

Elliptical shape of joint posterior reflects **correlation** between μ_2 and p_2

Simulation Study – Example Dataset

Elliptical shape of joint posterior reflects correlation between μ_2 and p_2

2-

Simulation Study - Example Dataset

Elliptical shape of joint posterior reflects **correlation** between μ_2 and p_2

Simulation Study – Results

Model	Parameter	Mean	SD	2.5%	50%	97.5%	Bias	MSE
GLMM	μ_1	-150.27	10.10	-170.04	-150.27	-130.49	0.27	105.78
	μ_2	-50.14	10.11	-69.93	-50.14	-30.35	0.14	109.52
	p_1	0.10	0.03	0.05	0.10	0.16	< 0.01	< 0.01
	p_2	0.40	0.05	0.31	0.40	0.49	< 0.01	< 0.01
	$ ho_1$	0.08	0.07	< 0.01	0.07	0.22	0.02	< 0.01
	$ ho_2$	0.59	0.05	0.49	0.60	0.68	0.01	< 0.01
Gaussian	μ_1	-150.27	10.13	-170.10	-150.28	-130.44	0.27	105.71
copula	μ_2	-50.13	10.04	-69.77	-50.13	-30.50	0.13	109.37
model	p_1	0.10	0.03	0.05	0.10	0.16	< 0.01	< 0.01
	p_2	0.40	0.05	0.31	0.40	0.49	< 0.01	< 0.01
	$ ho_1$	0.09	0.09	-0.09	0.09	0.27	0.01	0.01
	ρ_2	0.58	0.05	0.47	0.58	0.68	0.02	< 0.01
	$ heta_1$	0.15	0.16	-0.16	0.16	0.46	0.02	0.02
	θ_2	0.74	0.07	0.60	0.74	0.86	0.03	0.01

29

Simulation Study - Results

Model	Parameter	Posterior median estimates close to true parameter values with minimal bias			50%	97.5%	Bias	MSE
GLMM	μ_1				-150.27	-130.49	0.27	105.78
	μ_2				-50.14	-30.35	0.14	109.52
	p_1	0.10	0.03	0.05	0.10	0.16	< 0.01	< 0.01
	p_2	0.40	0.05	0.31	0.40	0.49	< 0.01	< 0.01
	$ ho_1$	0.08	0.07	< 0.01	0.07	0.22	0.02	< 0.01
	$ ho_2$	0.59	0.05	0.49	0.60	0.68	0.01	< 0.01
Gaussian	μ_1	-150.27	10.13	-170.10	-150.28	-130.44	0.27	105.71
copula	μ_2	-50.13	10.04	-69.77	-50.13	-30.50	0.13	109.37
model	p_1	0.10	0.03	0.05	0.10	0.16	< 0.01	< 0.01
	p_2	0.40	0.05	0.31	0.40	0.49	< 0.01	< 0.01
	$ ho_1$	0.09	0.09	-0.09	0.09	0.27	0.01	0.01
	$ ho_2$	0.58	0.05	0.47	0.58	0.68	0.02	< 0.01
	$ heta_1$	0.15	0.16	-0.16	0.16	0.46	0.02	0.02
	θ_2	0.74	0.07	0.60	0.74	0.86	0.03	0.01

Simulation Study – Correlation

• What is the **impact of correlation** ρ_2 on Prob (μ_2 - μ_1 > Δ_e and p_2 - p_1 < Δ_s | data, prior) ?

31

Simulation Study - Correlation

- What is the **impact of correlation** ρ_2 on Prob (μ_2 μ_1 > Δ_e and p_2 p_1 < Δ_s | data, prior) ?
- Given $\Delta_e = 100$ and $\Delta_s = 0.3$, simulations were repeated for different values of ρ_2

Simulation Study - Correlation

- What is the **impact of correlation** ρ_2 on Prob (μ_2 μ_1 > Δ_e and ρ_2 ρ_1 < Δ_s | data, prior) ?
- Given $\Delta_e = 100$ and $\Delta_s = 0.3$, simulations were repeated for different values of ρ_2

ρ2	GLMM Model	Gaussian Copula Model
0	25.19%	25.48%
0.2	23.28%	23.26%
0.4	21.06%	21.29%
0.6	19.02%	19.48%
0.75	17.00%	17.60%

33

Simulation Study - Correlation

- What is the **impact of correlation** ρ_2 on Prob (μ_2 μ_1 > Δ_e and p_2 p_1 < Δ_s | data, prior) ?
- Given $\Delta_e = 100$ and $\Delta_s = 0.3$, simulations were repeated for different values of ρ_2

ρ2	GLMM Model	Gaussian Copula Model
0	25.19%	25.48%
0.2	23.28%	23.26%
0.4	21.06%	21.29%
0.6	19.02%	19.48%
0.75	17.00%	17.60%

Increasing value of $\rho_{\rm 2}$ leads to lower posterior probability for the BR profile defined by $\Delta_{\rm e}$ = 100 and $\Delta_{\rm s}$ = 0.3

Simulation Study - Dose-Response

- Define the following quantities:
 - Minimum Effective Dose (MED) = the smallest dose d that produces an improvement in efficacy of at least $\Delta_{\rm e}$ compared to placebo with posterior probability > p%
 - Critical Effective Dose (CED) = the largest dose d that produces an increase in toxicity no greater than $\Delta_{\rm s}$ compared to placebo with posterior probability > p%

35

Simulation Study - Dose-Response

- Assume ρ_2 increases with dose of active drug
- Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

Simulation Study – Dose-Response

- Assume ρ_2 increases with dose of active drug
- Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

37

Simulation Study - Dose-Response

- Assume ρ_2 increases with dose of active drug
- Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

If $\Delta_{\rm e}$ = 80 $\Delta_{\rm s}$ = 0.3 and p = 70% then MED = 2.5 and CED = 4.0 Any dose in the range [2.5, 4.0] can be considered "optimal"

Simulation Study – Dose-Response

- Assume ρ_2 increases with dose of active drug
- Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

If $\Delta_{\rm e}$ = 80 $\Delta_{\rm s}$ = 0.3 and p = 70% then MED = 2.5 and CED = 4.0 Any dose in the range [2.5, 4.0] can be considered "optimal"

If Δ_s = 0.3 is considered too high an increase in risk of AE and team sets Δ_s = 0.05, then MED \leq CED only if p = 30%

There is more uncertainty with this more stringent BR profile

39

Simulation Study - Dose-Response

- How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?
- Define Success = Prob $(\mu_2 \mu_1 > \Delta_e \text{ and } p_2 p_1 < \Delta_s \mid \text{data, prior}) \ge p$

Simulation Study – Dose-Response

- How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?
- Define **Success** = Prob $(\mu_2 \mu_1 > \Delta_e \text{ and } p_2 p_1 < \Delta_s \mid \text{data, prior}) \ge p$

41

Simulation Study - Dose-Response

- How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?
- Define **Success** = Prob $(\mu_2 \mu_1 > \Delta_e \text{ and } p_2 p_1 < \Delta_s | \text{ data, prior}) \ge p$

Given design assumptions, there is 80% power that at least one dose satisfies study success if success is defined using $\Delta_{\rm e}=80$, $\Delta_{\rm s}=0.2$, and p=80%

- The monoclonal antibody X targeting CD3 receptors was being developed as a potential treatment for new-onset (<3 months) Type 1 diabetes mellitus
- A PoC was designed to assess the efficacy and safety of X over an 18 month period in patients with new-onset Type 1 DM
 - Primary efficacy endpoint was the decline of C-peptide levels at 6 months (measurement of beta-cell function) – treated as continuous outcome
 - Key safety events of interest included infection and Cytokine Release Syndrome (CRS) treated as binary outcomes
- A total of 73 subjects had C-peptide levels recorded at 6 months (39 received X, 34 placebo)

43

Case Study in Type 1 Diabetes

• For safety, focus initially on risk of infection

GLMM and Bayesian inference used to obtain parameter estimates of interest

	Parameter	Posterior Median	95% Credible Interval	
Efficacy	CFB C-Peptide X - Placebo	0.63	(0.27, 0.99)	
Safety Prob (Infection) X - Placebo		0.24	(0.07, 0.42)	
CFB = Change from baseline at 6 months				

• For safety, focus initially on risk of infection

GLMM and Bayesian inference used to obtain parameter estimates of interest

	Parameter	Posterior Median	95% Credible Interval	
Efficacy	CFB C-Peptide X - Placebo	0.63	(0.27, 0.99)	Patients receiving X have more stable levels of C-Peptide
Safety	Prob (Infection) X - Placebo	0.24	(0.07, 0.42)	
CFB = Change fr	om baseline at 6 months			

Case Study in Type 1 Diabetes

• For safety, focus initially on risk of infection

GLMM and Bayesian inference used to obtain parameter estimates of interest

• "Given a patient's baseline C-peptide level, what is his/her likely BR profile with drug X compared to placebo?"

49

Case Study in Type 1 Diabetes

• "Given a patient's baseline C-peptide level, what is his/her likely BR profile with drug X compared to placebo?"

"Given a patient's baseline C-peptide level, what is his/her likely BR profile with drug X compared to placebo?

Case Study in Type 1 Diabetes

"Given a patient's baseline C-peptide level, what is his/her likely BR profile with drug X compared to placebo?"

- Does the joint modelling assessment of this PoC for drug X support further development?
 - The analysis suggests that simultaneous high efficacy levels AND small increases in risk are unlikely (< 10% probability)

53

Case Study in Type 1 Diabetes

- Does the joint modelling assessment of this PoC for drug X support further development?
 - The analysis suggests that simultaneous high efficacy levels AND small increases in risk are unlikely (< 10% probability)
- A phase 3 program was run with a lower dose of drug X both studies failed to achieve their primary endpoint, although risk profile improved
 - This is coherent with outcome of joint modelling analysis conducted on POC data

Bayesian Joint Modelling of Benefit and Risk in Drug Development – Summary

- Bayesian inference coupled with joint models of mixed outcomes is a powerful tool for Benefit-Risk assessment
 - · Can explore dependency between benefit and risk using clinical thresholds for decision-making
 - · Build joint (and conditional) probabilistic statements that help quantify risk in development programs
 - Predict responses for a new subject conditional on learnings from clinical trial data
- Benefit-Risk profile is a combination of two aspects:
 - Set of thresholds for efficacy and safety define Benefit-Risk profile of interest (qualitative)
 - Level of evidence (posterior probability) to support Benefit-Risk profile quantify risk (quantitative)
- Methods have been applied to 3-dim setting (mixture of continuous, binary and count endpoints)
 - Beyond 3 dimensions it may be difficult to interpret and visualise quantitative BR assessments
- Models and visualisations can be adapted to other settings beyond BR, e.g., co-primary endpoints

55

Bayesian Joint Modelling of Benefit and Risk in Drug Development – Outlook

- Joint modelling of BR can be used to gain insight into outcomes from Multi-criteria decision analysis (MCDA)
 - E.g., consider top influencing attributes/endpoints on MCDA outcome and estimate their joint posterior distribution
- Impact of estimands on benefit-risk assessments?
 - E.g., variable of interest may include key safety event leading to use of rescue medication
- Can clinical thresholds be used to convey Patient Preference?

EFSPI/PSI Benefit-Risk SIG

- If you want to learn more about benefit-risk in drug development...
 - Check out the <u>EFSPI/PSI Benefit-Risk Special Interest Group</u> (SIG): **please reach out to me!**
 - The SIG has created the **benefit-risk blog**: www.benefit-risk-assessment.com
 - o Upcoming seminars and recent publications
 - o Trainings and workshops

o ...

Watch out for the half-day course on preference elicitation at PSI 2019!

57

Thank you!

maria_j.costa@novartis.com