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Outline

= Motivation

» Bayesian Joint Modelling of Mixed Outcomes

» Simulation Study
» Case Study in Type 1 Diabetes

= Summary

Motivation

= How to assess whether an intervention is
efficacious?

* Typically this means that clinical endpoints of
interest reach statistical significance

e “...For comparison, at week 24, 56.1% of
patients in treatment group had gained 215
letters from baseline compared with 12.3% of
patients in the sham group (P <.001).”




12/17/2018

Motivation

= How to assess if the benefit-risk profile is
‘positive’ for the patient population studied?

* Is there a trade-off between efficacy and
safety? If so, for which endpoints?

* Are there subgroups of patients for whom the
new intervention has a better benefit-risk
profile?

Motivation

= How to assess if the benefit-risk profile is
‘positive’ for the patient population studied?

* Is there a trade-off between efficacy and
safety? If so, for which endpoints?

* Are there subgroups of patients for whom the
new intervention has a better benefit-risk
profile?

* Quantitative benefit-risk assessment can
help address some of these questions
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Motivation

Quantitative Benefit-Risk (BR) Assessment
= Can help teams gain insight into specific BR questions about key endpoints of interest
= Important to communicate BR to stakeholders in a way that supports decision-making
= Important to quantify uncertainty in BR profile — particularly if aim is to discharge risk

Motivation
/ Multivariate Modelling \

= Potential for efficacy and safety signals to
be linked via exposure to active drug

= Joint modelling of key efficacy and safety
endpoints enables efficient data driven BR
analyses & can account for mixture of
endpoints (continuous, binary, count, etc)
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= Can help teams gain insight into specific BR questions about key endpoints of interest
= Important to communicate BR to stakeholders in a way that supports decision-making
= Important to quantify uncertainty in BR profile — particularly if aim is to discharge risk
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Motivation
/ Multivariate Modelling \ f Bayesian Inference \

= Potential for efficacy and safety signals to = Framework to build relevant and intuitive
be linked via exposure to active drug probability statements that can quantify
uncertainty and risk

= Joint modelling of key efficacy and safety

endpoints enables efficient data driven BR = Bayesian updating mechanism naturally
analyses & can account for mixture of supports “Learn & Confirm” drug
endpoints (continuous, binary, count, etc) development paradigm — crucial when

k / Kassessing BR /
v

Quantitative Benefit-Risk (BR) Assessment
= Can help teams gain insight into specific BR questions about key endpoints of interest
= Important to communicate BR to stakeholders in a way that supports decision-making
= Important to quantify uncertainty in BR profile — particularly if aim is to discharge risk

Bayesian Joint Modelling of Mixed
Outcomes - GLMM

= Option 1: Use generalized linear mixed models (GLMM)
+ Assume J different outcomes on same subject (each following some distribution)
» For subject i with mean response u;, g(u;) = X; b+ Z; u;, u; ~ N(O, f(X;))

10
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Bayesian Joint Modelling of Mixed
Outcomes - GLMM

= Option 1: Use generalized linear mixed models (GLMM)
+ Assume J different outcomes on same subject (each following some distribution)
+ For subject / with mean response u;, g(1;) = X; b 4 Z; wi, u; ~ N0, f (X)) |

= Random effect u; is shared across all J observations for subject i thus modelling potential
correlation between efficacy and safety outcomes
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Bayesian Joint Modelling of Mixed
Outcomes - GLMM

= Option 1: Use generalized linear mixed models (GLMM)
+ Assume J different outcomes on same subject (each following some distribution)
» For subject i with mean response u;, g(u;) = X; b+ Z; u;, u; ~ N(O, f(X;))

= Random effect u; is shared across all J observations for subject i thus modelling potential
correlation between efficacy and safety outcomes

= If g(u;) # identity, fixed effects b are conditional on random effects y;

» Monte Carlo integration can be used to obtain marginal population effects — important when making

inferences at the population level

= Constraints may be necessary to ensure identifiability for certain distributions

12
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Bayesian Joint Modelling of Mixed
Outcomes - Copulas

= Option 2: Use copulas
» Copulas are distribution functions used to build new multivariate distributions given set of marginal
distributions of interest (which are preserved)
* B9, HOwy2) = C(F(01),G(y2) | 8), where:
o F(.)and G(.) are the CDFs of the marginal distributions of y,and y,, respectively
o C(.,.|0)isthe copula function (e.g., Gaussian CDF)
o 6 measures association between y,;and y,
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Bayesian Joint Modelling of Mixed
Outcomes - Copulas

Option 2: Use copulas
» Copulas are distribution functions used to build new multivariate distributions given set of marginal
distributions of interest (which are preserved)
* Eg., HOw,y,) = C(F(01),G(y2) | 8), where:
o F(.)and G(.) are the CDFs of the marginal distributions of y,and y,, respectively
o C(.,.|0)isthe copula function (e.g., Gaussian CDF)
o 6 measures association between y,;and y,

= Possible to directly obtain marginal population effects for parameters of interest

= Choice of copula c(.,.|8) may impact results through different dependency assumptions

Challenging to interpret beyond 3 dimensions (non-unique model definition)

14
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Joint Modelling, Benefit-Risk and
Decision-Making
= Aim of BR assessment is two fold:

» Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
» Understand trade-off between efficacy & safety

15

Joint Modelling, Benefit-Risk and
Decision-Making

= Aim of BR assessment is two fold:

+ Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
» Understand trade-off between efficacy & safety

= Define different BR profiles using clinically meaningful efficacy and safety thresholds:
» A, represents minimum improvements in efficacy with the new drug relative to comparator
+ A, represents maximum increases in risk with the new drug relative to comparator

= A,and A are independent and should be set by the project team - can be viewed as clinical
Go/No-go boundaries

16
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Joint Modelling, Benefit-Risk and
Decision-Making
= Aim of BR assessment is two fold:

» Assess evidence associated with BR profiles of interest (e.g., quantified through a posterior probability)
» Understand trade-off between efficacy & safety

= Define different BR profiles using clinically meaningful efficacy and safety thresholds:
» A, represents minimum improvements in efficacy with the new drug relative to comparator
+ A, represents maximum increases in risk with the new drug relative to comparator

= A,and A are independent and should be set by the project team - can be viewed as clinical
Go/No-go boundaries

= Trade-off between efficacy and safety represented by the joint probability statement:
Prob (u, - uy> A, and p, - py < Ag | data, prior)
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Joint Modelling, Benefit-Risk and
Decision-Making

| Benefit-Risk Contour Plot | vvvvvvvv
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Joint Modelling, Benefit-Risk and

Decision-Making

| Benefit-Risk Contour Plot |
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Joint Modelling, Benefit-Risk and

Decision-Making

| Benefit-Risk Contour Plot |
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Trade-off between efficacy and
safety represented by the joint
posterior probability statement:

Prob (i, - 1, > A, and p,- p; <A |
data, prior)
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Joint Modelling, Benefit-Risk and
Decision-Making

| Benefit-Risk Contour Plot | vvvvvv o
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Joint Modelling, Benefit-Risk and
Decision-Making

| Benefit-Risk Contour Plot | vvvvvv o
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Simulation Study

» Objective of simulation study was 2-fold:

» To understand inference properties with GLMM and Copulas

o Bias, MSE, efc...

o Impact of the characteristics of the marginal distributions on inference outcome

» To develop graphical approaches for decision-making

o For study design
o For study data analysis

= All SAS and R code available!

23

Simulation Study - Set Up

= Two treatment arms: new active drug (treatment 2) vs control (treatment 1)

= Endpoints and parameters:

BR Endpoints Endpoint Type Parameter Values Correlation between endpoints
Primary efficacy endpoint Continuous, N (¢, 0?) 1y =-150, p,=-50 p1=0.1
Key AE endpoint (e.g AESI) Binary, Bernoulli (p) p,=0.1, p,=0.4 p,=0.6

24
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Simulation Study - Set Up

= Two treatment arms: new active drug (treatment 2) vs control (treatment 1)

= Endpoints and parameters:

BR Endpoints Endpoint Type Parameter Values Correlation between endpoints
Primary efficacy endpoint Continuous, N (¢, 0?) 1y =-150, p,=-50 p1=0.1
Key AE endpoint (e.g AESI) Binary, Bernoulli (p) p,=0.1, p,=0.4 p,=0.6

Joint distribution of interest: u,- u, and p,- p,

= 1000 simulated datasets generated, n = 100 / arm

Non-informative priors assumed for all model parameters

= Bayesian inference performed using MCMC

25
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Simulation Study - Example Dataset
Posterior Distribution for ;- uy and p, - py
(Joint and Marginal)
i
H
3
0.0 - T + T 4
70 80 80 100 110 120 130
Treatment Difference (Efficacy)
Elliptical shape of joint posterior reflects
correlation between p, and p,
26
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Posterior Distribution for - uyand p, - py
(Joint and Marginal)

Treatment Difference (Safety)

70 80 %0 00 10 1200 130

Treatment Difference (Efficacy)

Simulation Study - Example Dataset

Benefit-Risk Contour
Prob (u; - uy > A, and p, - py < Agldata, prior)

Elliptical shape of joint posterior reflects
correlation between p, and p,

27
imulation S E leD
Simulation Study - Example Dataset
Posterior Distribution for ;- uy and p, - py Benefit-Risk Contour
(Joint and Marginal) Prob (u; - 1y > A, and p, - py < Ag|data, prior)
i
g
£
H
3
0.0, - + T »” 4
70 80 80 100 110 120 130
Treatment Difference (Efficacy)
. Example: 84% posterior probability
Elliptical shape of joint posterior reflects that difference active vs control in risk of
correlation between y, and p, an AE is at most 0.35 (A, = 0.35) AND in
efficacy at least 80 units (A, = 80)
28
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Simulation Study - Results

Model Parameter Mean SD 2.5% 50% 97.5% Bias MSE
GLMM i —150.27 10.10 —170.04 —150.27 —130.49 0.27 105.78
o —50.14 10.11 —69.93 —50.14 -30.35 0.14 109.52
D 0.10 0.03 0.05 0.10 0.16 <0.01 <0.01
D2 0.40 0.05 0.31 0.40 0.49 <0.01 <0.01
o1 0.08 0.07 <0.01 0.07 022 0.02 <0.01
P2 0.59 0.05 0.49 0.60 0.68 0.01 <0.01
Gaussian i —150.27 10.13 —-170.10 —150.28 —130.44 0.27 105.71
copula s —50.13 10.04 —69.77 —50.13 —30.50 0.13 109.37
model D 0.10 0.03 0.05 0.10 016 <0.01 <0.01
D> 0.40 0.05 0.31 0.40 0.49 <0.01 <0.01
P 0.09 0.09 —0.09 0.09 027 0.01 0.01
P2 0.58 0.05 0.47 0.58 0.68 0.02 <0.01
6, 0.15 0.16 —0.16 0.16 046 0.02 0.02
6, 0.74 0.07 0.60 0.74 086 0.03 0.01
29
- -
Simulation Study - Results
Posterior median estimates -
Model Parameter close to true parameter values 50% 97.5% Bias MSE
GLMM M with minimal bias |> -150.27 —130.49 0.27 105.78
o —50.14 -30.35 0.14 109.52
D 0.10 0.03 0.05 0.10 0.16 <0.01 <0.01
D2 0.40 0.05 0.31 0.40 0.49 <0.01 <0.01
o1 0.08 0.07 <0.01 0.07 022 0.02 <0.01
P2 0.59 0.05 0.49 0.60 0.68 0.01 <0.01
Gaussian i —150.27 10.13 —-170.10 —150.28 —130.44 0.27 105.71
copula s —50.13 10.04 —69.77 —50.13 —30.50 0.13 109.37
model D 0.10 0.03 0.05 0.10 016 <0.01 <0.01
D> 0.40 0.05 0.31 0.40 0.49 <0.01 <0.01
P 0.09 0.09 —0.09 0.09 027 0.01 0.01
P2 0.58 0.05 0.47 0.58 0.68 0.02 <0.01
6, 0.15 0.16 —0.16 0.16 046 0.02 0.02
6, 0.74 0.07 0.60 0.74 086 0.03 0.01

30
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Simulation Study - Correlation

= What is the impact of correlation p, on Prob (u,- ;> A, and p,- p; < A | data, prior) ?

Simulation Study - Correlation

= What is the impact of correlation p, on Prob (u,- ;> A, and p,- p; < A | data, prior) ?
= Given A, = 100 and A = 0.3, simulations were repeated for different values of p,

4 !
7 80 9 100 110 120 130

Treatment Difference (Efficacy)

16
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Simulation Study - Correlation

= What is the impact of correlation p, on Prob (u,- ;> A, and p,- p; < A | data, prior) ?
= Given A, = 100 and A, = 0.3, simulations were repeated for different values of p,

[ GLMM Model Gaussian Copula Model

3 0 25.19% 25.48%
®
H 0.2 23.28% 23.26%
£
3 0.4 21.06% 21.29%
5 0.6 19.02% 19.48%

| 0.75 17.00% 17.60%

70 80 90 100 110 120 130
Treatment Difference (Efficacy)

Simulation Study - Correlation

= What is the impact of correlation p, on Prob (u,- ;> A, and p,- p; < A | data, prior) ?
= Given A, = 100 and A = 0.3, simulations were repeated for different values of p,

[ GLMM Model Gaussian Copula Model

3 0 25.19% 25.48%
®
H 0.2 23.28% 23.26%
£
3 0.4 21.06% 21.29%
5 0.6 19.02% 19.48%

| 0.75 17.00% 17.60%

70 80 90 100 110 120 130
Treatment Difference (Efficacy)

Increasing value of p, leads to lower posterior probability
for the BR profile defined by A, =100 and A,=0.3

17
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Simulation Study - Dose-Response

= Define the following quantities:
= Minimum Effective Dose (MED) = the smallest dose d that produces an improvement in efficacy of at

least A, compared to placebo with posterior probability > p%
= Critical Effective Dose (CED) = the largest dose d that produces an increase in toxicity no greater
than A, compared to placebo with posterior probability > p%

How to select the dose with optimal BR profile?
(given A, A, and p)

]
v v v

If MED < CED If MED = CED If MED > CED

| | |

Will need to either

Any dose within . .
[MED, CED] will satisfy Thlls corresp.onds to the modify Ae,. As,.o.r D,
; ¥ single optimal dose or assess if clinical

the desired BR profile o
program is viable

Simulation Study - Dose-Response

= Assume p,increases with dose of active drug
= Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

18
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Simulation Study - Dose-Response

= Assume p,increases with dose of active drug

= Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

o

Efficacy Threshold =40 Efficacy Threshold =60 Efficacy Threshold= 60 Efficacy Threshold = 100

g Q Q Q. Q.
o 4 % L B - B
2 y “a, 7y
2 r Pl s /] e
§ ’ %**M %k‘m« B‘&"a* il
i
5 2
5 ) /
0
012345 012345 012345 0122345
Minimum Effective Dose (IMED)
Safety Threshold 005 === 02 v 03
Probability (%) O 30 0150 % 70 A 90 95
37
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Simulation Study - Dose-Response
= Assume p,increases with dose of active drug
= Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest
Efficacy Threshold= 40 Efficacy Threshold =60  Efficacy Threshold= 80  Efficacy Threshold = 100
6
If A,=80 A;=0.3 and p = 70% then MED = 2.5 and CED = 4.0
5
a o o Iy o, Any dose in the range [2.5, 4.0] can be considered “optimal”
% 4 % L B - B
2 y “a, 7y
2 r e
§ ’ %**M %k‘m« B‘&"a* il
i
5 2
5 ) /
0
012345 012345 012345 0122345
Minimum Effective Dose (IMED)
Safety Threshold 005 === 02 v 03
Probability (%) O 30 0150 % 70 A 90 95
38
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Simulation Study - Dose-Response

= Assume p,increases with dose of active drug
= Emax model for efficacy endpoint, probit linear regression for safety endpoint of interest

Efficacy Threshold =40 Efficacy Threshold =60 Efficacy Threshold= 60 Efficacy Threshold = 100

o

g % % a ®a.,

o 4 ke . . *

3 by “a, N

; r Al A HY

g ° %&\ %\::. - Sl T~ ~x

g Boic, /e -2

I If A= 0.3 is considered too high an increase in risk of AE and
E ' ' team sets A= 0.05, then MED < CED only if p = 30%

o / /

There is more uncertainty with this more stringent BR profile

012345 012345 012345 0122345
Minimum Effective Dose (IMED)
Safety Threshold 005 === 02 v 03
Probability (%) O 30 O 50 ¥ 70 A 90 * 95
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Simulation Study - Dose-Response

= How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?
= Define Success = Prob (u, - u;> A, and p,- p; <A, | data, prior) = p

40
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Simulation Study - Dose-Response

= How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?

= Define Success = Prob (u, - u;> A, and p,- p; <A, | data, prior) = p

E1 Threshold = 80

E1 Threshold = 100

E1 Threshold = 120

=02

0.3]| S1 Threshold

$1 Threshold

0.6 |[ S1 Threshold
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Simulation Study - Dose-Response

= How to assess the Power of a chosen study design to deliver a dose with the BR profile of interest?

= Define Success = Prob (u, - u;> A, and p,- p; <A, | data, prior) = p

Given design assumptions, there
is 80% power that at least one
dose satisfies study success if

success is defined using A, = 80,

Ag=0.2,and p = 80%

Pawer (%)

E1 Threshold = 80

E1 Threshold = 100

E1 Threshold = 120

=02

0.3]| S1 Threshold

$1 Threshold

0.6 |[ S1 Threshold

42
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Case Study in Type 1 Diabetes

= The monoclonal antibody X targeting CD3 receptors was being developed as a potential
treatment for new-onset (<3 months) Type 1 diabetes mellitus

= A PoC was designed to assess the efficacy and safety of X over an 18 month period in patients
with new-onset Type 1 DM

+ Primary efficacy endpoint was the decline of C-peptide levels at 6 months (measurement of beta-cell
function) — treated as continuous outcome

» Key safety events of interest included infection and Cytokine Release Syndrome (CRS) — treated as
binary outcomes

= Atotal of 73 subjects had C-peptide levels recorded at 6 months (39 received X, 34 placebo)

43

Case Study in Type 1 Diabetes

= For safety, focus initially on risk of infection

Benefits ——> Changein C-Peptide level

Observed correlation suggests that more stable
C-peptide levels tend to be associated with the
occurrence of at least one infection event

Benefit-Risk
Balance

Risks ——> Serious infections

= GLMM and Bayesian inference used to obtain parameter estimates of interest

Posterior 95% Credible
Parameter .
Median Interval
. CFB C-Peptide
Efficacy X - Placebo 0.63 (0.27, 0.99)
Prob (Infection)
Safety X - Placebo 0.24 (0.07, 0.42)

CFB = Change from baseline at 6 months
44
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Case Study in Type 1 Diabetes

= For safety, focus initially on risk of infection

Benefits }-—? Change in C-Peptide level

Observed correlation suggests that more stable
C-peptide levels tend to be associated with the
occurrence of at least one infection event

Benefit-Risk
Balance

Risks ——> Serious infections

= GLMM and Bayesian inference used to obtain parameter estimates of interest

Posterior 95% Credible

Parameter .
Median Interval

Efficacy | C;Bi»lziskt;:e 0.63 (0.27,0.99) ]—»[ Patients receiving X have more stable levels of C-Peptide ]

Prob (Infection)

Safety X - Placebo 0.24 (0.07, 0.42)
CFB = Change from baseline at 6 months
45
Case Study in Type 1 Diabetes
= For safety, focus initially on risk of infection
Benefits }-—? Change in C-Peptide level
Observed correlation suggests that more stable
C-peptide levels tend to be associated with the
Balance occurrence of at least one infection event
Risks —_— Serious infections
= GLMM and Bayesian inference used to obtain parameter estimates of interest
Parameter Posterior 95% Credible
Median Interval
) CFB C-Peptide
Efficacy X - Placebo 0.63 (0.27, 0.99)
Safety Pr;t{ Sraf::ssn) 0.24 (0.07, 0.42) Patients receiving X have higher risk of serious infection
CFB = Change from baseline at 6 months
46
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Case Study in Type 1 Diabetes

| Benefit-Risk Contour Plot |

47
Case Study in Type 1 Diabetes
| Benefit-Risk Contour Plot | —
High (posterior) probability to increases in The data does not support difference
risk of infection > 40% AND differences in in C-peptide levels > 0.8 nmol/Lin drug | |
— C-peptide levels < 0.4 nmol/L X vs placebo AND difference in risk
with drug X vs placebo, infection with drug X vs placebo < 0.1
48
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Case Study in Type 1 Diabetes

= “Given a patient’s baseline C-peptide level, what is his/her likely BR profile with drug X compared to
placebo?”

49

Case Study in Type 1 Diabetes

= “Given a patient’s baseline C-peptide level, what is his/her likely BR profile with drug X compared to
placebo?”

Covariate Profile Plot for Baseline C-Peptide

0.9
Bas
C-Pe
3
2
0.8 p
Trea
—Pl
-~ Active
07

0.6

Prob (Infection)

-1.5 -1.0 -0.5 0.0 0.5 1.0

Mean Change from Baseline in C-Peptide at 6 Months
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Case Study in Type 1 Diabetes

= “Given a patient’s baseline C-peptide level, what is his/her likely BR profile with drug X compared to

placebo?”
Covariate Profile Plot for Baseline C-Peptide The BR proﬁle Of drug X iS
1.0 ® - )
% robust to a patient’s
baseline C-Peptide level
0.9
Baseline
= C-Peptide
'% 3
E 08 f
=
o Treatment
o — Placebo
- - Active

0.6

-1.5 -1.0 -0.5 0.0 0.5 1.0

Mean Change from Baseline in C-Peptide at 6 Months
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Case Study in Type 1 Diabetes

= “Given a patient’s baseline C-peptide level, what is his/her likely BR profile with drug X compared to

placebo?”
Covariate Profile Plot for Baseline C-Peptide
1.0 . ,\
0.9
Baselir!e
g C-Peptide
2 3
In the placebo group, g ., Iz
€ o
subjects with lower baseline 3 5
. E Treatment
C-Peptide levels have a more ~ placano
favourable BR profile o7 \'\“‘\‘
0.6

-1.5 -1.0 -0.5 0.0 0.5 1.0

Mean Change from Baseline in C-Peptide at 6 Months

52
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Case Study in Type 1 Diabetes

» Does the joint modelling assessment of this PoC for drug X support
further development?

» The analysis suggests that simultaneous high efficacy levels AND small increases
in risk are unlikely (< 10% probability)

Case Study in Type 1 Diabetes

» Does the joint modelling assessment of this PoC for drug X support
further development?

» The analysis suggests that simultaneous high efficacy levels AND small increases
in risk are unlikely (< 10% probability)

= A phase 3 program was run with a lower dose of drug X — both studies
failed to achieve their primary endpoint, although risk profile improved
« This is coherent with outcome of joint modelling analysis conducted on POC data

27
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Bayesian Joint Modelling of Benefit and
Risk in Drug Development - Summary

= Bayesian inference coupled with joint models of mixed outcomes is a powerful tool for
Benefit-Risk assessment

» Can explore dependency between benefit and risk using clinical thresholds for decision-making
+ Build joint (and conditional) probabilistic statements that help quantify risk in development programs
» Predict responses for a new subject conditional on learnings from clinical trial data

= Benefit-Risk profile is a combination of two aspects:
+ Set of thresholds for efficacy and safety — define Benefit-Risk profile of interest (qualitative)
» Level of evidence (posterior probability) to support Benefit-Risk profile — quantify risk (quantitative)

Methods have been applied to 3-dim setting (mixture of continuous, binary and count endpoints)
» Beyond 3 dimensions it may be difficult to interpret and visualise quantitative BR assessments

= Models and visualisations can be adapted to other settings beyond BR, e.g., co-primary
endpoints

Bayesian Joint Modelling of Benefit and
Risk in Drug Development - Outlook

= Joint modelling of BR can be used to gain insight into outcomes from
Multi-criteria decision analysis (MCDA)

+ E.g., consider top influencing attributes/endpoints on MCDA outcome and estimate
their joint posterior distribution

» Impact of estimands on benefit-risk assessments?

+ E.g., variable of interest may include key safety event leading to use of rescue
medication

= Can clinical thresholds be used to convey Patient Preference?

28
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EFSPI/PSI Benefit-Risk SIG

= |f you want to learn more about benefit-risk in drug development...

+ Check out the EFSPI/PSI Benefit-Risk Special Interest Group (SIG): please reach
out to me!

» The SIG has created the benefit-risk blog: www.benefit-risk-assessment.com
o Upcoming seminars and recent publications
o Trainings and workshops
O ...

= Watch out for the half-day course on preference elicitation at PSI 2019!

57

Thank you!

maria_j.costa@novartis.com
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